Home

Rechtbank Den Haag, 28-10-2015, ECLI:NL:RBDHA:2015:12320, C/09/481474 / HA ZA 15-100

Rechtbank Den Haag, 28-10-2015, ECLI:NL:RBDHA:2015:12320, C/09/481474 / HA ZA 15-100

Gegevens

Instantie
Rechtbank Den Haag
Datum uitspraak
28 oktober 2015
Datum publicatie
30 oktober 2015
ECLI
ECLI:NL:RBDHA:2015:12320
Zaaknummer
C/09/481474 / HA ZA 15-100

Inhoudsindicatie

Octrooizaak. Vernietiging octrooi Vringo i.v.m. UMTS-standaard. Niet inventief. Geen probleemuitvinding.

Uitspraak

vonnis

Team handel

Zittingsplaats Den Haag

zaaknummer / rolnummer: C/09/481474 / HA ZA 15-100

Vonnis van 28 oktober 2015

in de zaak van

de besloten vennootschap met beperkte aansprakelijkheid

ZTE NETHERLANDS B.V.,

gevestigd te Den Haag,

eiseres,

advocaat mr. D. Knottenbelt te Rotterdam,

tegen

de vennootschap naar vreemd recht

VRINGO INFRASTRUCTURE INC.,

gevestigd te New York, New York, Verenigde Staten van Amerika

gedaagde,

advocaat mr. L.Ph.J. baron van Utenhove te Den Haag.

Partijen zullen hierna ZTE en Vringo genoemd worden.

De procedure is voor ZTE behandeld door mr. R. Hermans en mr. H.J. Pot, advocaten te Amsterdam, en de octrooigemachtigde mr. ir. F.A.T. van Looijengoed. Voor Vringo is de zaak inhoudelijk behandeld door mr. B.J. van den Broek, advocaat te Amsterdam.

1 De procedure

1.1.

Het verloop van de procedure blijkt uit:

-

de beschikking van de voorzieningenrechter van deze rechtbank van 22 oktober 2014, waarbij is toegestaan ZTE te dagvaarden in een procedure volgens het versnelde regime in octrooizaken;

-

de dagvaarding van 23 oktober 2014;

-

de producties bij VRO nietigheidsdagvaarding van 28 januari 2015 met producties E1-E17;

-

de conclusie van antwoord tevens akte houdende overlegging producties van 8 april 2015 met producties GP 1-10;

-

de akte houdende overlegging nadere producties Z18 en Z19 van ZTE van 15 juli 2015;

-

de akte houdende overlegging producties GP 11-13 van Vringo van 4 september 2015 ingekomen op 10 augustus 2015;

-

de brief van 24 augustus 2015 van ZTE dat partijen overeenstemming hebben over de 1019h Rv1 kosten (€ 150.000,-);

- de brief van 26 augustus 2015 van ZTE met de CV’s van dr. [deskundige 1] en dr. [deskundige 2] ;

- de brief van 28 augustus 2015 van ZTE met productie 20;

-

de brief van 28 augustus 2015 van Vringo waarin mr. Van den Broek bezwaar maakt tegen de late overlegging van productie 20 door ZTE en verzoekt het pleidooi van 4 september 2015 geen doorgang te laten vinden en de zaak uit het VRO-regime te verwijderen;

-

de reactie daarop van ZTE van 1 september 2015;

-

de reactie daarop van Vringo van 1 september 2015;

-

de email van de rechtbank van 1 september 2015 waarin is medegedeeld dat de zitting doorgang zal vinden en er vooralsnog geen reden is de zaak uit het VRO-regime te verwijderen, terwijl over de toelaatbaarheid van ZTE productie 20 ter zitting zal worden besloten;

-

de mondelinge behandeling van 4 september 2015;

-

de pleitnota van ZTE;

-

de pleitnota van Vringo.

1.2.

Vringo heeft bezwaar gemaakt tegen de late overlegging door ZTE van productie 20, een tweede verklaring van deskundigen [deskundige 1] en [deskundige 2] . Nadat partijen op dit punt zijn gehoord is ter zitting beslist dat dit bezwaar gegrond is waardoor de productie geen onderdeel uitmaakt van de stukken.

1.3.

Het vonnis is bepaald op heden.

2 De feiten

2.1.

Nokia Corporation, althans Nokia Mobile Phones Ltd (hierna: “Nokia”) is houdster geweest van een aantal octrooien, waaronder het Europese octrooi EP 1 186 119 B2 (hierna ook: EP 119 of het octrooi) voor een “method for transmitting a sequence of symbols”, verleend op een aanvrage van 6 juli 2000 met inroeping van de prioriteitsdatum 9 juli 1999. EP 119 is verleend op 19 mei 2004 en van kracht voor onder meer Nederland.

2.2.

De (oorspronkelijke) Engelse tekst van de conclusies van EP 119 luidt (na gewijzigde instandhouding) als volgt:

Claims

1. A method (300, 400, 500) for transmitting a certain sequence of symbols, where

-

a frame is constructed of a certain number of consecutive symbols,

-

the symbols belonging to the sequence are transmitted (404, 502, 606) using two antennas and

-

the transmission of the sequence of symbols is characterized (401, 601) with a certain transmission pattern, characterized in that

-

the transmission of the sequence of symbols is started (402) from a predefined antenna,

-

each symbol of the sequence is transmitted using not more than one of said two antennas, whereby only one antenna is transmitting at a time, and

-

when a partial transmission pattern is used in the end of a frame, the transmission pattern is started (403, 405) from the beginning in the beginning of a next frame.

2 A method (500, 600) according to claim 1, where

-

the length of the transmission pattern is shorter than the length of a frame, and

-

the length of the frame is not a multiple of the length of the transmission pattern, characterized in that during each frame

-

the transmission pattern is repeated (502) until the length of the rest of the frame, which length is the length of the transmission pattern multiplied by the number of the repetition times within the frame subtracted from the length of the frame, is less than the length of the transmission pattern and

-

thereafter only a certain part, whose length is the length of the rest of the frame, of the transmission pattern is used (503).

3.A method according to claim 2, characterized in that the part of the transmission pattern is selected (609) from the beginning of the transmission pattern.

4. A method according to claim 2, characterized in that the length of the transmission pattern is an even number and the length of the frame is an odd number.

5. A method according to claim 4, where the sequence of symbols is transmitted using a first antenna and a second antenna, characterized in that the transmission pattern is an alternating pattern and the length of the transmission pattern is two.

6. A method according to claim 1, where each frame consists of a certain number of consecutive time slots and each time slot consists of a certain number of consecutive symbols, characterized in that one symbol belonging to the sequence of symbols is transmitted in each time slot.

7. A method according to claim 1, where each frame consists of a certain number of consecutive time slots and each time slot consists of a certain number of consecutive symbols, characterized in that more than one symbol belonging to the sequence of symbols is transmitted in each time slot.

8. A method according to claim 1, where each frame consists of a certain number of consecutive time slots and each time slot consists of a certain number of consecutive symbols, characterized in that in at least one of the time slots no symbol belonging to the sequence of symbols is transmitted.

9. A method according to claim 1, characterized in that the length of the transmission pattern is larger than the length of the frame.

10. A method according to claim 1, characterized in that the transmission of the sequence of symbols is started from the primary antenna that transmits the common pilot signal.

11. A method according to claim 1, characterized in that the sequence of symbols is transmitted in downlink direction in a cellular network.

12. An arrangement (700), which comprises control means (701) for controlling the transmission of a sequence of symbols according to a certain transmission pattern and using two antennas, characterized in that it further comprises

-

indication means (702) for indicating the antenna from which to transmit the first symbol belonging to the sequence,

-

means for arranging the transmission of each symbol of the sequence using not more than one of said two antennas, whereby only one antenna is transmitting at a time, and

-

starting means (703) for starting the transmission pattern from the beginning in the beginning of a next frame, when a partial transmission pattern is used in the end of a frame.

13. A network element (710), characterized in that it comprises an arrangement (700) according to claim 12.

14. A network element according to claim 13, characterized in that it is a radio network controller of a spread spectrum system.

15. A network element (710) according to claim 13, characterized in that it is a base station of a spread spectrum system and comprises at least two antennas (721, 722).

2.3.

De onbestreden Nederlandse vertaling van de conclusies luidt (na gewijzigde instandhouding) als volgt:

1. Werkwijze (300, 400, 500) voor het verzenden van een bepaalde reeks symbolen, waarin

-

een frame opgebouwd is uit een aantal opeenvolgende symbolen,

-

de bij een reeks behorende symbolen verzonden (404, 502, 606) worden door gebruik te maken van twee antennes, en

-

de verzending van een reeks symbolen gekarakteriseerd (401, 601) wordt door een

bepaald verzendingspatroon, met het kenmerk dat

-

de verzending van de reeks symbolen wordt gestart (402) vanaf een vooraf bepaalde antenne,

-

elk symbool van de reeks verzonden wordt door gebruik te maken van niet meer

dan een van de twee antennes, waardoor slechts een antenne op een bepaald moment

uitzendt, en

- wanneer een partieel verzendingspatroon gebruikt wordt aan het eind van een frame, het verzendingspatroon gestart (403, 405) wordt vanaf het begin in het begin van een volgende frame.

2. Werkwijze (500, 600) volgens conclusie 1, waarin

-

de lengte van het verzendingspatroon korter is dan de lengte van een frame, en

-

de lengte van een frame niet een veelvoud is van de lengte van het verzendingspatroon, met het kenmerk dat gedurende elk frame

-

het verzendingspatroon herhaald (502) wordt totdat de lengte van de rest van het frame, welke lengte de lengte is van het verzendingspatroon vermenigvuldigd met het aantal herhalingskeren binnen het frame afgetrokken van de lengte van het frame, kleiner is dan de lengte van het verzendingspatroon, en

-

daarna slechts een bepaald deel, waarvan de lengte de lengte is van de rest van het frame, van het verzendingspatroon gebruikt (503) wordt.

3. Werkwijze volgens conclusie 2, met het kenmerk dat het deel van het verzendingspatroon geselecteerd (609) wordt vanaf het begin van het verzendingspatroon.

4. Werkwijze volgens conclusie 2, met het kenmerk dat de lengte van het verzendingspatroon een even getal is en de lengte van het frame een oneven getal is.

5. Werkwijze volgens conclusie 4, waarin de reeks van symbolen verzonden wordt gebruikmakend van de eerste antenne en de tweede antenne, met het kenmerk dat het verzendingspatroon een alternerend patroon is en de lengte van het verzendingspatroon twee is.

6. Werkwijze volgens conclusie 1, waarin elk frame bestaat uit een bepaald aantal opeenvolgende tijdruimtes en elke tijdruimte bestaat uit een bepaald aantal opeenvolgende symbolen, met het kenmerk dat een bij de reeks symbolen behorend symbool verzonden wordt in elke tijdruimte.

7. Werkwijze volgens conclusie 1, waarin elk frame bestaat uit een bepaald aantal opeenvolgende tijdruimtes en elke tijdruimte bestaat uit een bepaald aantal opeenvolgende symbolen, met het kenmerk dat meer dan een bij de reeks symbolen behorend symbool verzonden wordt in elke tijdruimte.

8. Werkwijze volgens conclusie 1, waarin elke frame bestaat uit een bepaald aantal opeenvolgende tijdruimtes en elke tijdruimte bestaat uit een bepaald aantal opeenvolgende symbolen, met het kenmerk dat in tenminste een van de tijdruimtes geen bij de reeks van symbolen behorend symbool wordt verzonden.

9. Werkwijze volgens conclusie 1, met het kenmerk dat de lengte van het verzendingspatroon groter is dan de lengte van het frame.

10. Werkwijze volgens conclusie 1, met het kenmerk dat de verzending van de reeks symbolen gestart wordt vanaf de primaire antenne die het gemeenschappelijke stuursignaal (pilot signal) verzendt.

11. Werkwijze volgens conclusie 1, met het kenmerk dat de reeks van symbolen verzonden wordt in een neerwaartse verbindingsrichting in een cellulair netwerk.

12. Rangschikking (700), die besturingsmiddelen (701) omvat voor het besturen van de verzending van de reeks symbolen volgens een bepaald verzendingspatroon en gebruikmakend van twee antennes, met het kenmerk dat de rangschikking verder omvat:

- aanduidmiddelen (702) voor het aanduiden van de antenne vanaf welke het eerste

bij de reeks behorend symbool moet worden verzonden,

-

middelen voor het rangschikken van de verzending van elk symbool van de reeks gebruikmakend van niet meer dan een van de twee antennes, waardoor slechts een antenne per moment uitzendt, en

-

startmiddelen (703) voor het starten van het verzendingspatroon vanaf het begin in

het begin van een volgend frame, wanneer een partieel verzendingspatroon gebruikt wordt in het einde van het frame.

13. Netwerkelement (710), met het kenmerk dat het een rangschikking (700) volgens conclusie 12 omvat.

14. Netwerkelement volgens conclusie 13, met het kenmerk dat het een radionetwerkbesturingseenheid van een uitspreidspectrumsysteem is.

15. Netwerk element (710) volgens conclusie 13, met het kenmerk dat het een basisstation van een uitspreidspectrumsysteem is en ten minste twee antennes (721, 722) omvat.

2.4.

In de beschrijving is onder meer het volgende opgenomen:

[0001] The invention relates in general to transmission of a certain sequence of symbols. In particular the invention relates to diversity transmissions where the symbols belonging to the sequence are sent using two antennas.

[0002] In cellular networks the downlink and uplink radio transmissions comprise synchronization channels, which can be special synchronization symbols. Using the information carried in the synchronization symbols, for example, the receiver can determined the timing of the transmission. Information is usually sent in frames, and the frames consist of a certain number of time slots. The time slots, in turn, consist of a certain number of symbols. If synchronization symbols are used, they can be sent, for example, once in each time slot. It is also possible to send synchronization information in bursts, so that more information is sent at a time, but synchronization information is sent less frequently than once in a time slot. From the synchronization information it is possible to determine both the time slot timing and the frame timing, i.e. where time slots and frames start.

[0003] The synchronization symbols may carry also other information than just indicate timing. For example, in Wideband Code Division Multiple Access (WCDMA) cellular networks the synchronization symbols carry certain information about the spreading code that a base station uses to spread the downlink transmissions. In a handover, for example, the mobile station entering a new cell can determine the part of the downlink spreading code with the help of the synchronization symbols. The mobile station needs to know the spreading code in order to find out the control information transmitted via the common control channel. Otherwise it cannot, for example, communicate with the radio access network after power up or in a handover situation receive from the new cell cell-specific control information that is needed to perform the handover.

[0004] Traditionally information is transmitted over radiolink using a single antenna. Transmission diversity refers to sending information via more than one antennas. The transmitted information can be, for example, encoded so that the transmitted symbol flows are not equal, but the original information flow can be determined from each transmitted symbol flow. The receiver can, for example, choose special decoding scheme in case transmission diversity is used and deduce the transmitted information. The synchronization symbols can carry information also about the use of some transmission diversity scheme. It is important that the receiver can determine the sent synchronization symbol correctly. Otherwise, for example, it may fail to identify the transmission diversity and encoding schemes that are used.

[0005] In WO 9 914 871 at least two antennas are transmitting simultaneously a sequence of symbols according to a predefined transmission pattern.

[0006] Fig. 1 represents a typical WCDMA cell 100, where there is a base station 101 in the middle of the cell. There are also two mobile stations 102 and 103 in the Fig. 1, and the communication between each mobile station and the base station is indicated with arrows. The base station broadcasts common control information to all the mobile stations in the cell, and it spreads this common control information with a certain spreading code. In a WCDMA system, a spreading code usually consists of two parts: a long scrambling code CS and a short channelization code CC. The scrambling code is effective to eliminate, for example, the effect of multipath propagation. The channelization codes that are used within a cell are orthogonal, and they are effective to distinct, for example the transmission to each mobile station. In a WCDMA system, within a cell a same scrambling code CS may be used for all downlink transmissions. The downlink transmission are synchronized, and therefore the different channelization codes are enough for successful despreading of the transmitted signals. In the neighboring cells, other scrambling codes are used so that adjacent cells do not disturb each other's transmissions.

[0007] The use of spreading codes in downlink transmission is presented in Fig. 1, where the arrow 111 represents the common control information broadcast. The spreading code can be presented as the product of the scrambling and channelization codes CCC = CS CC. When entering a new cell, the mobile station can determine the downlink scrambling code CS from the broadcast transmission the base station sends. The channelization code related to common control information is typically a fixed constant throughout the WCDMA system, so after determining the downlink scrambling code and the frame timing, the mobile station can determine the common control information.

[0008] The arrow 112 in Fig. 1 represents the downlink transmission to the mobile station 102, and the arrow 113 represents the downlink transmission to the mobile station 103. The spreading code CD1 for the downlink connection to the mobile station 102 is CD1 = CS CC1, and the spreading code CD2 for the downlink connection to the mobile station 103 is CD2 = CS CC2. Since the uplink transmissions are not synchronized and each mobile has its own radio channel from the mobile station to the base station, each mobile station may use a specific scrambling code, and various channels, for example, to a certain mobile station may be separated using various channelization codes. The downlink and uplink spreading codes for connections terminating to a mobile station are usually established either when a mobile station enters a new cell or when a new connection is established between the mobile station and the radio access network.

[0009] Fig. 2 shows some of the common channels a base station in a WCDMA system generally transmits The pilot symbols are transmitted over a common pilot channel (CPICH) 201. The pilot symbols are usually sent 100% of the duty cycle. The pilot symbols are predetermined, and CPICH is spread using the downlink scrambling code CS and a fixed channelization code.

[0010] The synchronization channel (SCH) 202 occupies typically 10% of the duty cycle in the beginning of each time slot 210. The frame 211, which comprises a certain fixed number of time slots, is also presented in Fig. 2. The synchronization channel carries two synchronization codes: a primary synchronization code 203 and a secondary synchronization code 204. These codes are transmitted simultaneously within one symbol period. Both the primary and secondary synchronization codes can be modulated, for example, with the same symbol, and because the codes have good crosscorrelation properties the receiver can distinguish the codes. A mobile station entering a new cell or measuring a new cell in the neighborhood may always receive successfully information broadcast over the SCH.

[0011] The primary synchronization code is a constant code that denotes the beginning of the time slots. The secondary synchronization codes, which form a synchronization code sequence or word, indicate the timing of the frames. In addition to the frame timing, the second synchronization code sequence within a frame indicates the scrambling code group to which the downlink scrambling code the base station uses belongs. A mobile station entering a new cell may determine the downlink scrambling code, for example, by testing the scrambling codes of the indicated scrambling code group on the CPICH. The correct scrambling code CS is the one that with the known channelization code produces from the received radio signal the known transmitted pilot symbols.

[0012] Once the scrambling code CS has been determined, the received pilot symbols may be used, for example, for determining the complex channel coefficient. In general, the radio signal that is received is not exactly the same as the transmitted one. The signal may experience changes in amplitude and phase, and these changes are time-dependent. They are taken into account using the complex channel coefficient h when the despread signal is processed. An estimate for the channel coefficient can be determined by comparing the received pilot symbols to the known transmitted pilot symbols. The channel coefficient may be assumed to be constant during the time over which the pilot symbol and the studied symbol are transmitted.

[0013] Common control information is transmitted using, for example, a Primary Common Control Physical Channel (PCCPCH) 205. PCCPCH is transmitted 90% of the duty cycle, at the time when the synchronization symbols are not sent It is spread using a predetermined channelization code and the downlink scrambling code, as discussed above. After the scrambling code has been identified, the mobile station may despread the CCPCH information from the spread signal it receives. The information may be, for example, information related to the logical Broadcast Control Channel (BCCH). The mobile station needs the BCCH information, for example, to start communicating with the radio access network after power up or to make a successful handover.

[0014] Fig. 2 represents a situation where the base station uses only one antenna TX1 for broadcasting information. When transmission diversity is employed, there are two antennas where the information may be transmitted. It is preferable that each antenna transmits its own pilot signal, so that the channel coefficient estimates can be determined for each antenna. The radio waves emitted for the two transceivers may propagate in different ways to the antenna of the mobile station.

[0015] Fig. 3 represents some broadcast channels when transmission diversity and two antennas TX1 and TX2 are in use. The antenna TX1 transmits the common pilot channel CPICH 201 similarly as when no transmission diversity is employed. The antenna TX2 transmits an auxiliary pilot 301. The synchronization symbols may be transmitted using only one antenna or both antennas. In time switched transmit diversity (TSTD) both antennas are used to transmit the symbols, one at a time. Fig. 3 shows how the synchronization symbols are transmitted using TSTD and an alternating transmission pattern. For example, the synchronization symbol 302 is transmitted from the antenna TX1 and the synchronization symbol 303 is transmitted from the antenna TX2. Each synchronization symbol carries both the primary and the secondary synchronization code.

[0016] The common control information may be also transmitted from both antennas TX1 and TX2. In this case the BCCH information, for example, is encoded before it is transmitted over the PCCPCH channel. Space time transmit diversity (STTD), for example, specifies that from the primary antenna TX1 the symbols are transmitted as such, i.e. the sequence of transmitted symbols is S1, S2, S3, S4,.... From the second antenna TX2 the sequence of transmitted symbols starts in the following way: -S2*, S1*, -S4*, S3*,..., where the asterisk indicates the complex conjugate. Fig. 3 presents the PCCPCH data 304 transmitted from the antenna TX1 and the PCCPCH data 305 transmitted from the antenna TX2. It is possible also to use the space time transmit diversity for the BCCH information but transmit all the synchronization symbols from one antenna.

[0017] The base station may indicate the use of diversity scheme and two transceivers, for example, by transmitting a specific message on a broadcast channel or modulating the synchronization symbols. A certain synchronization symbol value indicates that the STTD in on, and another value indicates that it is off. The mobile station may also determine the use of a diversity scheme by detecting the auxiliary pilot symbols. The mobile station may also use all three indicators of the diversity scheme.

[0018] When the mobile station detects the presence of STTD using the synchronization symbol, the value of the synchronization symbol needs to be determined reliably. When a certain symbol needs to be determined, the effect of the channel coefficient has to be taken into account. The mobile station receives the following signal

where h represents the complex channel coefficient s SCH represents the synchronization symbol and n represent the noise.

[0019] When the received signal r in2 multiplied by the complex conjugate of the channel coefficient estimate

the result is the synchronization symbol scaled with a scalar *h and the term related to noise. From here it is quite straightforward to infer the value of the synchronization symbol.

[0020] Above, the synchronization symbols have been used as an example of a sequence of symbols that is transmitted using two antennas. The problem is that when the TSTD diversity scheme is in use, the mobile station cannot necessarily distinguish from which antenna a certain synchronization symbol, or any other symbol that is transmitted using a time switched diversity scheme, is transmitted. Consider, for example, a situation where a certain sequence of symbols is transmitted once is every time slot, and a frame consists of an odd number of time slots. If the symbols belonging to the sequence are transmitted using a time switched diversity scheme, two diversity antennas are used and the transmission pattern is an alternating pattern, in a certain time slot the symbol belonging to the sequence is transmitted from one antenna in every other frame and in the rest of the frames from the other antenna. Therefore the mobile station does not know, which channel coefficient estimate to use for a symbol sent in a certain time slot with a time switched transmission scheme.

[0021] To obtain a reliable result, the signal transmitted by the primary transceiver has to be processed with the channel coefficient estimate 2 determined from the primary pilot and the signal transmitted by the secondary transceiver has to be processed with the channel coefficient estimate 2 determined from the auxiliary pilot. Not knowing from which antenna a certain symbol is transmitted causes unnecessary interference to the decision which symbol was sent3 In case of synchronization symbols, this may cause that the mobile station cannot utilize the transmission diversity of, for example, the common control information for enhancing the quality of the received signal. Consequently, if the transmission diversity is in use, but the receiver does not notice this, the quality of the received common control signal may be poorer than in a case where no transmission diversity is applied.

[0022] The object of the invention is to provide a versatile method for transmitting a sequence of symbols using two antennas. A further object of the invention is that the method enables to determine unambiguously from which antenna a symbol belonging to sequence is transmitted.

[0023] The objects of the invention are achieved by starting the time switched transmit diversity pattern of the sequence of symbols always from the same antenna in the beginning of a frame and by using the same pattern in each frame.

[0024] A method according to the invention is a method for transmitting a certain sequence of symbols, where

-

a frame is constructed of a certain number of consecutive symbols,

-

the symbols belonging to the sequence are transmitted using two antennas and

-

the transmission of the sequence of symbols is characterized with a certain transmission pattern,

and it is characterized in that

-

the transmission of the sequence of symbols is started from a predefined antenna and

-

when a partial transmission pattern is used in the end of a frame, the transmission pattern is

started from the beginning in the beginning of a next frame.

[0025] An arrangement according to the invention is an arrangement, which comprises control means for controlling the transmission of a sequence of symbols according to a certain transmission pattern and using two antennas, and it is characterized in that it further comprises

- indication means for indicating the antenna from which to transmit the first symbol belonging to

the sequence and

- starting means for starting the transmission pattern from the beginning in the beginning of a next

frame, when a partial transmission pattern is used in the end of a frame.

[0026] A network element according to the invention is a network element, which comprises control means for controlling the transmission of a sequence of symbols according to a certain transmission pattern and using two antennas, and it is characterized in that it further comprises .

- indication means for indicating the antenna from which to transmit the first symbol belonging to

the sequence and

- starting means for starting the transmission pattern from the beginning in the beginning of a next

frame, when a partial transmission pattern is used in the end of a frame.

[0027] In a method according to the invention a sequence of symbol is transmitted using two antennas. The transmission of the symbols belonging to the sequence is characterized with a transmission pattern. Here the term transmission pattern refers to a pattern that specifies both from which antenna a symbol is transmitted and at which time the symbol is transmitted. The pattern may consist, for example, of a sequence of pattern items, and each of the pattern items corresponds to a certain period of time. A pattern item may be represented, for example, by a number indicating an antenna. For example, a pattern 1, 2, 0, 2, 2, 0, 1,..., where each number corresponds to a time slot, would indicate that a first symbol of the sequence is transmitted in a first time slot using a first antenna, a second symbol of the sequence is transmitted using a second antenna in a second time slot and in the third time slot no symbol belonging to the sequence is transmitted. In the fourth time slot, a third symbol of the sequence is transmitted using the second antenna, and so forth.

[0028] In the method according to the invention the antenna to transmit the first symbol belonging to the sequence is predefined. This means that a certain physical antenna is associated to the first antenna of the transmission pattern. The receiver thus knows which of the pilot signals is transmitted by the same antenna as the first symbols of the sequence, and it may use the correct channel coefficient estimate in processing the first symbol of the sequence. If, for example, the first symbol of the sequence is transmitted using the primary antenna that transmits the common pilot, the channel coefficient estimate determined from the common pilot is used to process the received first symbol.

[0029] Further, in the method according to the invention, the transmission pattern is started from the beginning in the beginning of each frame. Even if the receiver starts to receive the signal in the middle of the transmission, it knows explicitly that in each frame the first symbol belonging to the sequence is transmitted using a predefined antenna, for example, the primary antenna.

[0030] The advantage of the method according to the invention is thus that the receiver knows for certain at least the antenna from which in each frame the first symbol belonging to the symbol sequence is transmitted. It may thus process at least these symbols with the correct channel coefficient estimate. This removes unnecessary interference in the decision process where the received symbol is determined. When the method according to the invention is in use, at least some of the symbols of the sequence can thus be received reliably.

[0031] Usually the receiver knows the transmission pattern, and if two antennas are used to transmit the symbol sequence, the information from which antenna the first symbol in each frame is transmitted reveals the transmission antennas of all the symbols in that frame. A further advantage of the invention is thus that in a case where two diversity antennas are used and the receiver knows the transmission pattern, the receiver can process all received symbols belonging to the sequence with correct channel coefficient estimations and determine the received symbols reliably.

(…)

2.5.

Bij het octrooi horen onder meer de volgende figuren:

2.6.

Tegen het octrooi is oppositie ingesteld door Qualcomm Incorporated. Het octrooi is in beroep in oppositie door de TKB4 in gewijzigde vorm in stand gehouden bij beslissing van 11 oktober 2007 (T 0573/06). De TKB overwoog onder meer:

3.8

With regard to the question of inventive step the appellant argued essentially that in the case of the skilled person being confronted with a frame length which was not a multiple of the pattern length (in the case of D1 an odd frame length), it would be obvious to adopt the solution claimed, for very much the reasons given in the patent, i.e. in order to know what channel characteristics to apply from the beginning of a frame.

3.9

The board does not find this argumentation persuasive. Firstly it assumes that frame lengths different from multiples of pattern lengths will occur. This is not necessarily the case. It may be that in the communication system of D1 even frame lengths would be the natural choice, for some reason. Secondly frame length is a system variable. In the case of D1 the frame length could be deliberately chosen to be even.

3.10

The appellant argued in the oral proceedings before the board that frame lengths were predetermined, presumably by other standards groups, and that some frame lengths were indeed odd. However no evidence to support this assertion was put forward, despite the fact that the respondent had based much of its argumentation in writing on exactly the point that the skilled person would not necessarily face or recognise the problem. In the circumstances the board considers the appellant's assertion to be unsupported. Even if it were to take this alleged fact into account the argument would not be complete; it would be necessary to demonstrate that odd-length frames were predetermined in the particular set of standards to which D1 was contributing or to make an argument starting from a different prior art.

3.11

Assuming for the sake of argument that the skilled person would be required to solve the problem of fitting the pattern into an odd frame length, the board does not consider that the solution presently claimed is necessarily obvious. There would appear to be a number of different approaches. The following are only ones which occur to the board having heard the parties' arguments.

3.11.1

The system could rely on adaptive filters to restore the correct channel characteristics in the course of the frame.

3.11.2

The pattern could be adapted so that its length became a divisor of the frame length. For example, if the frame length were 15, the pattern could be chosen to be 0, 1, 2.

3.11.3

The transmission system could be adapted so that the final (or first) time slot does not include synchronisation symbols. That is the effective pattern for a whole frame would be 1, 2, 1, 2, 1, 2, ... 1, 2, 0.

3.12

Thus the board concludes that the appellant has not made a convincing case that the claimed subject-matter of the first auxiliary request does not involve an inventive step.

2.7.

Sinds 2002 houdt ZTE, althans haar moederbedrijf, zich bezig met het ontwerpen, vervaardigen en distribueren van telecommunicatieproducten.

2.8.

ZTE verhandelt onder meer baseband units van het type ZXSDR B8200 GU 360 (hierna: B8200) en remote radio units van het type ZXSDR R8880A (hierna: R8880A). B8200’s en R8880A’s zijn bestemd voor installatie in een UMTS-basisstation voor mobiele telecommunicatie van het type ZXSDR LJN BS8700 (hierna: LJN BS8700).

2.9.

In augustus 2012 heeft Vringo circa 500 octrooien, waaronder EP 119, van Nokia verworven.

2.10.

Op 5 oktober 2012 heeft Vringo in Engeland een inbreukprocedure tegen de Engelse ZTE-onderneming ingesteld op basis van EP (UK) 119. In 2012, 2013 en 2014

zijn door Vringo verdere inbreukprocedures op basis van EP 119 en verscheidene andere octrooien ingesteld tegen ZTE-ondernemingen in (wederom) Engeland, maar ook in Nederland, Duitsland, Frankrijk, Spanje, Australië, Brazilië, India, Roemenië en Maleisië, die zijn gericht op het verkrijgen van verbodsmaatregelen en schadevergoeding.

2.11.

In Nederland zijn deze gerechtelijke procedures begonnen met een verzoek ingevolge de Anti-Piraterijverordening (Verordening (EU) 608/2013, hierna te

noemen: "APV") aan de Nederlandse douaneautoriteiten tot vasthouding van

goederen. Naar aanleiding van dit verzoek zijn op 28 april, 16 mei, 23 mei en 28 mei 2014 een aantal zendingen van ZTE-goederen door de douane in Rotterdam tegengehouden en vastgehouden. De op 16 mei, 23 mei en 28 mei 2014 tegengehouden goederen zijn uiteindelijk vrijgegeven. Op de op 28 april 2014 tegengehouden goederen is civielrechtelijk conservatoir beslag gelegd. Vringo stelde in haar verzoek tot beslaglegging dat met deze goederen inbreuk werd gemaakt op EP (NL) 119. Vringo heeft ZTE in een (reguliere) bodemprocedure gedagvaard om de inbreuk vast te laten stellen.

2.12.

Bij vonnis van 17 december 2013 heeft het Landgericht Mannheim in een procedure tussen Vringo als eiseres en een tweetal andere bedrijven behorend tot het ZTE concern als gedaagden geoordeeld dat door de verhandeling van (onder meer) de LJN BS8700 in Duitsland indirecte inbreuk wordt gemaakt op conclusie 1 van EP 119. Aan ZTE, althans haar moeder- of zusterbedrijven, in China en Duitsland is een inbreukverbod opgelegd. Het gerecht zag na een voorlopige beoordeling van de geldigheid van het octrooi geen aanleiding de procedure aan te houden tot de beslissing in de aanhangig gemaakte nietigheidsprocedure bij het Bundes Patent Gericht (BGH) omdat het de kans op vernietiging onvoldoende hoog inschatte ('Dass der Erfolg der Nichtigkeitsklage wahrscheinlicher wäre als deren Misserfolg, kann die Kammer vorliegend nicht feststellen').' Het gerecht zag evenmin aanleiding de procedure aan te houden in afwachting van de beantwoording van prejudiciële vragen met betrekking tot de FRAND-problematiek door het Hof van Justitie van de Europese Unie, omdat ZTE hoe dan ook niet als voldoende serieus onderhandelaar over een FRAND-licentie werd gezien. Het verzoek van ZTE om de tenuitvoerlegging van dit vonnis te schorsen werd bij beslissing van het Oberlandesgericht Karlsruhe van 19 februari 2014 afgewezen. In een voorlopige opinie van 23 juli 2015 heeft het BGH vooralsnog aangegeven het octrooi geldig te achten.

2.13.

De voorzieningenrechter van deze rechtbank heeft bij vonnis van 24 oktober 2014 de vordering van ZTE tot opheffing van de gelegde beslagen afgewezen, onder meer overwegende dat de uitslag in een bodemprocedure aangaande de geldigheid van het octrooi te onzeker is.

3 Het geschil

4 De beoordeling

5 De beslissing